40 research outputs found

    Short lists for shortest descriptions in short time

    Full text link
    Is it possible to find a shortest description for a binary string? The well-known answer is "no, Kolmogorov complexity is not computable." Faced with this barrier, one might instead seek a short list of candidates which includes a laconic description. Remarkably such approximations exist. This paper presents an efficient algorithm which generates a polynomial-size list containing an optimal description for a given input string. Along the way, we employ expander graphs and randomness dispersers to obtain an Explicit Online Matching Theorem for bipartite graphs and a refinement of Muchnik's Conditional Complexity Theorem. Our main result extends recent work by Bauwens, Mahklin, Vereschchagin, and Zimand

    On approximate decidability of minimal programs

    Full text link
    An index ee in a numbering of partial-recursive functions is called minimal if every lesser index computes a different function from ee. Since the 1960's it has been known that, in any reasonable programming language, no effective procedure determines whether or not a given index is minimal. We investigate whether the task of determining minimal indices can be solved in an approximate sense. Our first question, regarding the set of minimal indices, is whether there exists an algorithm which can correctly label 1 out of kk indices as either minimal or non-minimal. Our second question, regarding the function which computes minimal indices, is whether one can compute a short list of candidate indices which includes a minimal index for a given program. We give some negative results and leave the possibility of positive results as open questions

    How powerful are integer-valued martingales?

    Full text link
    In the theory of algorithmic randomness, one of the central notions is that of computable randomness. An infinite binary sequence X is computably random if no recursive martingale (strategy) can win an infinite amount of money by betting on the values of the bits of X. In the classical model, the martingales considered are real-valued, that is, the bets made by the martingale can be arbitrary real numbers. In this paper, we investigate a more restricted model, where only integer-valued martingales are considered, and we study the class of random sequences induced by this model.Comment: Long version of the CiE 2010 paper

    Things that can be made into themselves

    Full text link
    One says that a property PP of sets of natural numbers can be made into itself iff there is a numbering α0,α1,\alpha_0,\alpha_1,\ldots of all left-r.e. sets such that the index set {e:αe\{e: \alpha_e satisfies P}P\} has the property PP as well. For example, the property of being Martin-L\"of random can be made into itself. Herein we characterize those singleton properties which can be made into themselves. A second direction of the present work is the investigation of the structure of left-r.e. sets under inclusion modulo a finite set. In contrast to the corresponding structure for r.e. sets, which has only maximal but no minimal members, both minimal and maximal left-r.e. sets exist. Moreover, our construction of minimal and maximal left-r.e. sets greatly differs from Friedberg's classical construction of maximal r.e. sets. Finally, we investigate whether the properties of minimal and maximal left-r.e. sets can be made into themselves

    Translating the Cantor set by a random

    Full text link
    We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set "cancels randomness" in the sense that some of its members, when added to Martin-Lof random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a Cantor set translate with a given constructive dimension

    Directed Multicut with linearly ordered terminals

    Full text link
    Motivated by an application in network security, we investigate the following "linear" case of Directed Mutlicut. Let GG be a directed graph which includes some distinguished vertices t1,,tkt_1, \ldots, t_k. What is the size of the smallest edge cut which eliminates all paths from tit_i to tjt_j for all i<ji < j? We show that this problem is fixed-parameter tractable when parametrized in the cutset size pp via an algorithm running in O(4ppn4)O(4^p p n^4) time.Comment: 12 pages, 1 figur
    corecore